Problem: active(zeros()) -> mark(cons(0(),zeros())) active(and(tt(),X)) -> mark(X) active(length(nil())) -> mark(0()) active(length(cons(N,L))) -> mark(s(length(L))) active(take(0(),IL)) -> mark(nil()) active(take(s(M),cons(N,IL))) -> mark(cons(N,take(M,IL))) active(cons(X1,X2)) -> cons(active(X1),X2) active(and(X1,X2)) -> and(active(X1),X2) active(length(X)) -> length(active(X)) active(s(X)) -> s(active(X)) active(take(X1,X2)) -> take(active(X1),X2) active(take(X1,X2)) -> take(X1,active(X2)) cons(mark(X1),X2) -> mark(cons(X1,X2)) and(mark(X1),X2) -> mark(and(X1,X2)) length(mark(X)) -> mark(length(X)) s(mark(X)) -> mark(s(X)) take(mark(X1),X2) -> mark(take(X1,X2)) take(X1,mark(X2)) -> mark(take(X1,X2)) proper(zeros()) -> ok(zeros()) proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) proper(0()) -> ok(0()) proper(and(X1,X2)) -> and(proper(X1),proper(X2)) proper(tt()) -> ok(tt()) proper(length(X)) -> length(proper(X)) proper(nil()) -> ok(nil()) proper(s(X)) -> s(proper(X)) proper(take(X1,X2)) -> take(proper(X1),proper(X2)) cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) and(ok(X1),ok(X2)) -> ok(and(X1,X2)) length(ok(X)) -> ok(length(X)) s(ok(X)) -> ok(s(X)) take(ok(X1),ok(X2)) -> ok(take(X1,X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Proof: Bounds Processor: bound: 5 enrichment: match automaton: final states: {14,13,12,11,10,9,8,7} transitions: active3(52) -> 46* top1(32) -> 14* nil3() -> 53* active1(5) -> 32* active1(2) -> 32* active1(4) -> 32* active1(6) -> 32* active1(1) -> 32* active1(3) -> 32* tt3() -> 53* proper1(5) -> 32* proper1(2) -> 32* proper1(4) -> 32* proper1(6) -> 32* proper1(1) -> 32* proper1(3) -> 32* 03() -> 56* ok1(25) -> 25,10 ok1(27) -> 27,11 ok1(29) -> 29,12 ok1(19) -> 32,13 ok1(21) -> 21,8 ok1(23) -> 23,9 ok1(18) -> 32,13 zeros3() -> 53* take1(3,1) -> 29* take1(3,3) -> 29* take1(3,5) -> 29* take1(4,2) -> 29* take1(4,4) -> 29* take1(4,6) -> 29* take1(5,1) -> 29* take1(5,3) -> 29* take1(5,5) -> 29* take1(6,2) -> 29* take1(1,2) -> 29* take1(6,4) -> 29* take1(1,4) -> 29* take1(6,6) -> 29* take1(1,6) -> 29* take1(2,1) -> 29* take1(2,3) -> 29* take1(2,5) -> 29* take1(3,2) -> 29* take1(3,4) -> 29* take1(3,6) -> 29* take1(4,1) -> 29* take1(4,3) -> 29* take1(4,5) -> 29* take1(5,2) -> 29* take1(5,4) -> 29* take1(5,6) -> 29* take1(6,1) -> 29* take1(1,1) -> 29* take1(6,3) -> 29* take1(1,3) -> 29* take1(6,5) -> 29* take1(1,5) -> 29* take1(2,2) -> 29* take1(2,4) -> 29* take1(2,6) -> 29* ok4(59) -> 46* s1(5) -> 27* s1(2) -> 27* s1(4) -> 27* s1(6) -> 27* s1(1) -> 27* s1(3) -> 27* cons4(56,53) -> 59* cons4(58,38) -> 46* length1(5) -> 25* length1(2) -> 25* length1(4) -> 25* length1(6) -> 25* length1(1) -> 25* length1(3) -> 25* active4(59) -> 62* active4(39) -> 58* and1(2,6) -> 23* and1(3,1) -> 23* and1(3,3) -> 23* and1(3,5) -> 23* and1(4,2) -> 23* and1(4,4) -> 23* and1(4,6) -> 23* and1(5,1) -> 23* and1(5,3) -> 23* and1(5,5) -> 23* and1(6,2) -> 23* and1(1,2) -> 23* and1(6,4) -> 23* and1(1,4) -> 23* and1(6,6) -> 23* and1(1,6) -> 23* and1(2,1) -> 23* and1(2,3) -> 23* and1(2,5) -> 23* and1(3,2) -> 23* and1(3,4) -> 23* and1(3,6) -> 23* and1(4,1) -> 23* and1(4,3) -> 23* and1(4,5) -> 23* and1(5,2) -> 23* and1(5,4) -> 23* and1(5,6) -> 23* and1(6,1) -> 23* and1(1,1) -> 23* and1(6,3) -> 23* and1(1,3) -> 23* and1(6,5) -> 23* and1(1,5) -> 23* and1(2,2) -> 23* and1(2,4) -> 23* top4(62) -> 14* cons1(2,6) -> 21* cons1(3,1) -> 21* cons1(3,3) -> 21* cons1(3,5) -> 21* cons1(4,2) -> 21* cons1(4,4) -> 21* cons1(4,6) -> 21* cons1(19,18) -> 20* cons1(5,1) -> 21* cons1(5,3) -> 21* cons1(5,5) -> 21* cons1(6,2) -> 21* cons1(1,2) -> 21* cons1(6,4) -> 21* cons1(1,4) -> 21* cons1(6,6) -> 21* cons1(1,6) -> 21* cons1(2,1) -> 21* cons1(2,3) -> 21* cons1(2,5) -> 21* cons1(3,2) -> 21* cons1(3,4) -> 21* cons1(3,6) -> 21* cons1(4,1) -> 21* cons1(4,3) -> 21* cons1(4,5) -> 21* cons1(5,2) -> 21* cons1(5,4) -> 21* cons1(5,6) -> 21* cons1(6,1) -> 21* cons1(1,1) -> 21* cons1(6,3) -> 21* cons1(1,3) -> 21* cons1(6,5) -> 21* cons1(1,5) -> 21* cons1(2,2) -> 21* cons1(2,4) -> 21* cons5(63,53) -> 62* nil1() -> 18* active5(56) -> 63* tt1() -> 18* 01() -> 19* zeros1() -> 18* mark1(25) -> 25,10 mark1(20) -> 32,7 mark1(27) -> 27,11 mark1(29) -> 29,12 mark1(21) -> 21,8 mark1(23) -> 23,9 top2(33) -> 14* active0(5) -> 7* active0(2) -> 7* active0(4) -> 7* active0(6) -> 7* active0(1) -> 7* active0(3) -> 7* active2(19) -> 33* active2(18) -> 33* zeros0() -> 1* proper2(20) -> 33* proper2(19) -> 42* proper2(18) -> 41* mark0(5) -> 2* mark0(2) -> 2* mark0(4) -> 2* mark0(6) -> 2* mark0(1) -> 2* mark0(3) -> 2* cons2(39,38) -> 40* cons2(42,41) -> 33* cons0(3,1) -> 8* cons0(3,3) -> 8* cons0(3,5) -> 8* cons0(4,2) -> 8* cons0(4,4) -> 8* cons0(4,6) -> 8* cons0(5,1) -> 8* cons0(5,3) -> 8* cons0(5,5) -> 8* cons0(6,2) -> 8* cons0(1,2) -> 8* cons0(6,4) -> 8* cons0(1,4) -> 8* cons0(6,6) -> 8* cons0(1,6) -> 8* cons0(2,1) -> 8* cons0(2,3) -> 8* cons0(2,5) -> 8* cons0(3,2) -> 8* cons0(3,4) -> 8* cons0(3,6) -> 8* cons0(4,1) -> 8* cons0(4,3) -> 8* cons0(4,5) -> 8* cons0(5,2) -> 8* cons0(5,4) -> 8* cons0(5,6) -> 8* cons0(6,1) -> 8* cons0(1,1) -> 8* cons0(6,3) -> 8* cons0(1,3) -> 8* cons0(6,5) -> 8* cons0(1,5) -> 8* cons0(2,2) -> 8* cons0(2,4) -> 8* cons0(2,6) -> 8* mark2(40) -> 33* 00() -> 3* 02() -> 39* and0(3,1) -> 9* and0(3,3) -> 9* and0(3,5) -> 9* and0(4,2) -> 9* and0(4,4) -> 9* and0(4,6) -> 9* and0(5,1) -> 9* and0(5,3) -> 9* and0(5,5) -> 9* and0(6,2) -> 9* and0(1,2) -> 9* and0(6,4) -> 9* and0(1,4) -> 9* and0(6,6) -> 9* and0(1,6) -> 9* and0(2,1) -> 9* and0(2,3) -> 9* and0(2,5) -> 9* and0(3,2) -> 9* and0(3,4) -> 9* and0(3,6) -> 9* and0(4,1) -> 9* and0(4,3) -> 9* and0(4,5) -> 9* and0(5,2) -> 9* and0(5,4) -> 9* and0(5,6) -> 9* and0(6,1) -> 9* and0(1,1) -> 9* and0(6,3) -> 9* and0(1,3) -> 9* and0(6,5) -> 9* and0(1,5) -> 9* and0(2,2) -> 9* and0(2,4) -> 9* and0(2,6) -> 9* zeros2() -> 38* tt0() -> 4* top3(46) -> 14* length0(5) -> 10* length0(2) -> 10* length0(4) -> 10* length0(6) -> 10* length0(1) -> 10* length0(3) -> 10* proper3(40) -> 46* proper3(39) -> 48* proper3(38) -> 47* nil0() -> 5* ok2(39) -> 42* ok2(38) -> 41* s0(5) -> 11* s0(2) -> 11* s0(4) -> 11* s0(6) -> 11* s0(1) -> 11* s0(3) -> 11* nil2() -> 38* take0(3,1) -> 12* take0(3,3) -> 12* take0(3,5) -> 12* take0(4,2) -> 12* take0(4,4) -> 12* take0(4,6) -> 12* take0(5,1) -> 12* take0(5,3) -> 12* take0(5,5) -> 12* take0(6,2) -> 12* take0(1,2) -> 12* take0(6,4) -> 12* take0(1,4) -> 12* take0(6,6) -> 12* take0(1,6) -> 12* take0(2,1) -> 12* take0(2,3) -> 12* take0(2,5) -> 12* take0(3,2) -> 12* take0(3,4) -> 12* take0(3,6) -> 12* take0(4,1) -> 12* take0(4,3) -> 12* take0(4,5) -> 12* take0(5,2) -> 12* take0(5,4) -> 12* take0(5,6) -> 12* take0(6,1) -> 12* take0(1,1) -> 12* take0(6,3) -> 12* take0(1,3) -> 12* take0(6,5) -> 12* take0(1,5) -> 12* take0(2,2) -> 12* take0(2,4) -> 12* take0(2,6) -> 12* tt2() -> 38* proper0(5) -> 13* proper0(2) -> 13* proper0(4) -> 13* proper0(6) -> 13* proper0(1) -> 13* proper0(3) -> 13* ok3(52) -> 33* ok3(56) -> 48* ok3(53) -> 47* ok0(5) -> 6* ok0(2) -> 6* ok0(4) -> 6* ok0(6) -> 6* ok0(1) -> 6* ok0(3) -> 6* cons3(48,47) -> 46* cons3(39,38) -> 52* top0(5) -> 14* top0(2) -> 14* top0(4) -> 14* top0(6) -> 14* top0(1) -> 14* top0(3) -> 14* problem: Qed